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We propose a universal approximate method which enables us to study the 
statistical mechanics of the liquid-crystalline ordering in the solutions of stiff- 
chain macromolecules with limited flexibility of arbitrary nature at arbitrary 
solution concentrations and arbitrary temperatures (solvent quality). In the 
variables temperature and concentration we construct the full phase diagrams 
for the nematic transition for the cases of long rigid rods and semiflexible 
macromolecules with freely jointed, persistent, and rotational-isomeric flexibility 
mechanisms. The method proposed can be easily generalized for the study of 
thermotropic polymer liquid crystals, as well as more complex polymer chain 
models (e.g., copolymers containing stiff and flexible fragments in the chain). 

KEY WORDS: Nematic ordering; polymer solution; stiff-chain polymer; 
phase diagram; chain flexibility mechanism. 

1. INTRODUCTION 

The ability to form a liquid-crystalline nematic phase is a characteristic 
property of solutions and melts of sufficiently stiff-chain polymers. (1'2) A 
large number of recent papers have been devoted to the theoretical study of 
the corresponding phase transition. ~3-14) Naturally, this transition occurs in a 
different ,way depending on whether we are considering a dilute polymer 
solution, concentrated solution or melt, relatively short practically rodlike 
macromolecules or long semiflexible chains. 

In a recent series of papers (15-18) we have analyzed in the framework of 
a universal approach the liquid-crystalline ordering in dilute solutions of 
stiff-chain macromolecules (i.e., macromolecules with the Kuhn segment 
length, I, much larger than the characteristic chain width, d) with partial flex- 
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ibility of different character for arbitrary relation between the total contour 
chain length, L, and the length of the Kuhn segment. In that study only 
athermal polymer solutions were considered, in which case the interaction of 
the chain segments is assumed to be purely steric (repulsion due to the 
mutual segment impenetrability), their attraction being completely neglected. 
Even in this case it was shown that the properties of the liquid-crystalline 
transition depend essentially not only on the ratios L/l and l/d, i.e., on the 
chain length and the degree of partial flexibility, but also on the flexibility 
mechanism (freely jointed, persistent, or rotational isomeric). 

The diversity of possible qualitatively different types of the liquid- 
crystalline ordering should increase even more if the attraction between the 
segments is taken into account. In this case, as is well known, ~5~ it is 
necessary to consider not only dilute polymer solutions, but also concen- 
trated orientationally ordered solutions and, consequently, polymer melts. 
The study of nematic ordering in polymer melts, which occurs when the 
temperature is lowered (the thermotropic case), is of significant self- 
dependent interest. 

It is clear that the theoretical analysis of the liquid-crystalline phase 
transition in each specific situation is an independent problem, which should 
be solved using a most convenient method. However, in different cases these 
methods may be very different (e.g., for the study of dilute solutions and 
melts). Thus, to compare most effectively the results for these different cases 
and to obtain a full picture of available tendencies and qualitative 
peculiarities it is worthwhile to make an attempt to describe the nematic 
ordering in polymer solutions of arbitrary concentration and melts for 
arbitrary values of ratios lid and L/l and arbitrary flexibility mechanism in 
the framework of a universal approximate theory able to catch the main 
qualitative effects. The construction of just such theory is the aim of the 
present paper. 

The majority of available theoretical papers dealing with the liquid- 
crystalline ordering in polymer systems are based on one of two classical 
approaches, which were proposed by Onsager (19~ and Flory. (2~ However, it 
is clear that these approaches are themselves not sufficient to construct a 
universal theory mentioned above. The Onsager method is valid only at 
small polymer concentrations in the solution and, consequently, it cannot be 
used to describe the orientation ordering in polymer melts and concentrated 
solutions. The Flory method is based on the lattice model, i.e., the chain flex- 
ibility mechanism in this method is fixed, and, furthermore, in the majority 
of cases (except for the case of completely rigid rods or rigid segments 
included in the chain) the Flory model does not take into account the 
continuum orientational distribution of the chain links. In Ref. 5 an attempt 
was made to synthesize the positive features of the Onsager and Flory 
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approaches; however, the developed theory can be applied only to a limited 
number of problems. 

In the present paper we propose a universal method, which can be used 
to study the liquid-crystalline nematic ordering in the solutions and melts of 
polymer chains of arbitrary concentration and solvent quality with arbitrary 
flexibility mechanism for the cases of completely stiff (L ~ l) and 
semiflexible (L ~> l) macromolecules. Generalizations of this method for the 
case of macromolecules with L ~ l, as well as for the case of copolymers 
including stiff and flexible fragments of the chain (this situation being most 
interesting from the point of view of thermotropic polymer liquid crystals) do 
not give rise to any difficulties and will be considered in subsequent 
publications. The method proposed does not pretend to be absolutely 
rigorous; however, we believe that it allows us to reveal main tendencies and 
qualitative peculiarities of the orientational ordering in polymer systems. 

Our method is based on the consideration of the papers (15-18~ dealing 
with dilute athermal polymer solutions; it is just the generalization of this 
consideration for the case of solutions of arbitrary concentration (and melts) 
and arbitrary quality of solvent. Thus in the next section we will summarize 
some of the results of Refs. 15-18, which will be used in the further 
consideration. In Section 3 we will discuss the generalizations necessary to 
describe solutions of arbitrary concentration. In Section4 to be able to 
consider the solvents of arbitrary quality we will take into account the forces 
of attraction between the chain links. In Sections 5-8 we will use the method 
proposed here to investigate the nematic ordering in the solutions of stiff- 
chain macromolecules with different mechanisms of partial flexibility. The 
application of our method to the study of the liquid-crystalline ordering in 
polymer melts (thermotropic case) will be the subject of a separate 
publication. 

2. FREE ENERGY OF DILUTE ATHERMAL SOLUTIONS OF 
STIFF-CHAIN POLYMERS 

In the present work we will consider the solutions of following objects: 
(a) completely stiff macromolecules (L ~ l), i.e., long rigid rods of length L 
and diameter d (Fig. la); (b) semiflexible macromolecules (L >> l) with freely 
joint flexibility mechanism, i.e., long chains of freely jointed rigid segments 
of length l and diameter d (Fig. lb); (c) semiflexible macromolecules with 
persistent (homogeneously distributed along the chain contour) flexibility 
mechanism (Fig. lc); (d) semiflexible macromolecules with rotational- 
isomeric flexibility mechanism (Fig. ld), which consists of elementary 
subunits of length a and diameter d, the angle 7 between the adjacent 
subunits being equal either to 7o = 60~ (with the probability p ~ 1; gauche 
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Fig. 1. (a) Completely stiff macromolecule (rigid rod); (b) semiflexible freely jointed 
macromolecule; (c) semiflexible persistent macromolecule; (d) semiflexible rotational-isomeric 
macromolecule. 

conformation) or to 7 = 0  (with the probability l - p ;  trans 
conformation).(~8) 

Let us consider an athermal dilute solution of one of the objects 
described above. Below we will use the term segment to denote all the 
macromolecule (rigid rod), in the case of Fig. la;  the straight chain segment 
between two junction points, in the case of Fig. lb; or the part of the chain 
whose length is equal to the length of the Kuhn segment, in the case of 
Figs. lc and ld. Let N be the total number of segments dissolved in the 
volume V, e = N/V; T the temperature, andf(n)  the orientational distribution 
function for the unit vector, n, tangential to the chain (in the cases of 
Figs. la  and lb this function is, as a matter of fact, the orientational 
distribution function for the straight segments). Let us assume the following 
normalization condition for f (n) :  f f (n )dJ9  = 1, dJ2 being an element of 
spatial angle. 

Then, as shown in Refs. 15-18, the free energy of the solution can be 
represented as a sum of three terms: F = F~ + F 2 + F3 ,  where F 1 corresponds 
to the translational entropy of the motion of the macromolecule as a whole, 
F 2 describes the entropy of orientational ordering, and F 3 represents the free 
energy of the steric interaction of segments in the second virial approx- 
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imation. In Ref. 15 it was shown that the translational entropy should be 
taken into account only for completely stiff but not for semiflexible 
macromolecules, thus (here and below indices A, B, C, D correspond to Figs. 
la, b,c,  d) 

F A = N T l n e ,  F~,C,V = 0 (1) 

The contribution to the free energy due to the entropy of orientational 
ordering can be written in the form ~5-18) 

F A'" = N T f  f(n)ln(4~zf(n)) dO 

F c = N T f  [Vf(n)]2 dO (2) 
4f(n) 

FD _ NTl ( f (n)  In ffgt dO 
a : 

where the additional function gt(n) in the latter expression is connected with 
f (n )  by means of the relation 

q/ffgt = f (n) ,  gq /~  (1 -- p) ~, + 2p f O(nn' - cos ~o) ~(n ')  dO' (3) 

It is easy to show that for the model of Fig. ld the length of the Kuhn 
segment, l, is equal to 

l _ 1 1 =- -4  _ 1 (4) 
a P sin2 Y0 P 

It can be noted that in the limit p ~ 1 or l ~> a the expression for F D can be 
significantly simplified (see Ref. 18). However, we will not perform such 
simplification here (since further in some cases we will deal with not very 
small yalues of p); in this case all the formulas written above remains valid 
not only for stiff-chain (l ~> d), but also for flexible (l ~ d) macromolecules. 

As to the free energy of the steric interaction of segments, F 3, in Refs. 
16-18 it was shown that for all four cases in the second virial approximation 
(which is valid for the description of the orientational ordering in dilute 
solution) 

F 3 = NTcI~d f [sin Yl f ( n , )  f(n2) d,.O 1 d.O 2 (5) 
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where T -  = L in the case of rigid rods and l ' -  l for semiflexible chains, and y 
is the angle between the vectors n I and n 2. Of course, Eq. (5) is exact only 
for sufficiently stiff polymer chains, l >> d. 

Equations (1)-(5) determine completely the free energy of dilute 
athermal solution of stiff-chain polymers. Further analysis of the properties 
of the liquid-crystalline ordering for this case was performed in Refs. 15-18.  

3. FREE ENERGY OF ATHERMAL SOLUTIONS OF STIFF-CHAIN 
POLYMERS OF ARBITRARY CONCENTRATION 

Let us assume that now we have a solution of one of the objects shown 
in Fig. 1, polymer volume fraction in the solution being not obligatory small. 
Obviously, the free energy of this solution, as before, can be written in the 
form F = F  1 + F  2 + F 3 ,  where for the terms F 1 and F 2 Eqs. (1)-(4) of the 
previous section remain valid. As to the term F3, for the solution of arbitrary 
concentration it cannot be, of course, written in the form (5) using the 
second virial approximation. 

Let us at first consider the problem of approximate calculation of the 
free energy F 3 in the solution of arbitrary concentration for the case of long 
rigid rods (Fig. la). In this consideration we will follow the ideas developed 
by Parsons in Ref. 21. 

Let nl and n 2 be the orientations of two rods, and r the vector between 
their centers of mass (Fig. 2). In Ref. 21 it was shown that a reasonable 
approximation for the pair correlation function of the solution of rods, 
g(r, n 1, n2 ;c  ), which gives a qualitatively correct description of the solution 
behavior in all the concentration range, is based on the assumption that 

g(r, n , ,  n 2 ; e) = g(r/a; c) (6) 

where r = Irl, a = a(n, nl ,  n2) is the distance of closest approach of the rods, 
and n = r/r. The assumption (6) is exact for dilute solutions; in the concen- 

Fig. 2 
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trated system it corresponds to a mean-field-type approximation, which 
separates the orientational and translational degrees of freedom. ~21) Since, as 
was already emphasized, our aim is not an absolutely rigorous theory, but 
rather an approximate consideration describing main qualitative tendencies, 
we will adopt the approximation (6) in the further consideration. In this case, 
as shown in Ref. 21, the free energy F 3 can be written in the form [cf. 
Eq. (5)]: 

NTg-(c) L 2d f I sin 71 f (n l )  f(n2) d~  1 d$~ 2 F3 

f < , 
(7) 

= g(l" c) de 
~0 

Thus, the problem of determination of the term F 3 amounts to the calculation 
of the function g(1 ; c). 

The approximation (6) in the case of a purely steric interaction can be 
interpreted somewhat more broadly as the assumption of independence of the 
function g(r/a; c) of the specific form of the solute particles (see Ref. 21). 
Thus, as soon as we adopt this approximation, the function g(1 ; c), which is 
necessary for the calculation of the free energy F 3, can be directly borrowed 
from the well-developed theory of sterically interacting spheres. The ther- 
modynamic characteristics of the solution of rigid spheres were calculated in 
the superposition approximation in Ref. 22. The results of the corresponding 
calculation, shown in Fig. 3, can be conveniently approximated by the 
expression 

q 

3 

2 

1 
g 0 ; c ) -  

1 - 0  

3 

(8) 

Fig. 3. 
o.2 a r  

Function g(l;  c) for the system of sterically interacting spheres: 1, Kirkwood theory; 
2, approximation (8); 3, theory of free volume. 
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where 0 = r162 is the packing degree of rigid spheres. The accuracy of the 
approximation (8)---15%---does not exceed the discrepancies between 
different modifications of the superposition approximation. (23) It should be 
also noted that the theory of free volume, (24'25) which is often used in the 
case of large densities, gives similar behavior for g(1; c) at the values of 0 
close to unity: g(1;c)=3/2 .  (2n)1/202/(1-- 01/3) (see Fig. 3). Thus, the 
relation (8) is, apparently, the simplest relation, which describes qualitatively 
correctly the behavior of the solution of rigid spheres in the whole concen- 
tration region. For the aims of the present paper the approximation (8) is 
quite sufficient, thus we will not use here more accurate modern theories (see 
Ref. 26). 

Substituting Eq. (8) in Eqs. (7) we obtain finally the approximate 
expression for the free energy of the steric interaction of rods, F A, in the 
solution of arbitrary concentration: 

( 1 )  
FA=NTCmaxL2dln 1 --r x f Isinylf(n')f(n2)d'Olda'2z (9) 

where Cmax is the maximal packing degree for the system of rods. In the limit 
c ~ Cma x we return to Eq. (5). 

It should be noted that the most frequently used approach to the 
calculation of the steric part of the free energy, F3, in polymer liquid- 
crystalline problems is the lattice approach of Flory3 2~ The expression (9) 
is, as a matter of fact, a continuum analog of the corresponding expression in 
the Flory theory. Actually, Flory theory in his notation (see Ref. 20) gives 

F2/T= n 1 in Vl - (nl + Ynx)In[1 - Vx(1 - 37/x)] - n~y (10) 

where 37 = x(4/n)(sin ~,), ~ is the angle between the direction of the rod and 
the ordering axis. For the sake of the convenient comparison of this 
expression with Eq. (9) let us consider a strongly ordered and dense state, in 
which case (sin ~,) ~ 1, and let us return to our notation; then Eq. (10) takes 
the form 

1 
FA=NTCmaxL2dln l__c/Cmax (siny) (11) 

which is identical to Eq. (9). Thus, the expression (9) retaining all the 
advantages of the corresponding expression in the Flory theory, is free from 
the shortcomings of this theory connected with the lattice character of the 
model. 

Let us now proceed to the case of the solutions of semiflelxible chains 
with various flexibility mechanisms (Figs. lb, c, d). It should be recalled that 
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in the dilute limit the expression for the free energy was determined by 
Eq. (5) independently of the chain flexibility mechanisms, the only difference 
between rigid rods (L ~ l) and semiflexible chains (L >> l) lying in the fact 
that the rod length, L, should be replaced by the Kuhn segment length, l. 
Arguments in favor of this statement were adduced in Ref. 16. These 
arguments without any change can be applied for the case of the solutions of 
arbitrary concentration as well (the main idea lying behind these arguments 
is the fact that semiflexible chains can be always divided into such 
elementary subunits of length )~ (l >> 2 >> d), that these subunits can be 
regarded as practically long rigid rods). Thus, the general expression for the 
steric part of the free energy in the solution of objects shown in Fig. 1 can be 
written in the form 

f3:NTemax~dln f lsinylf(nl)f(n2)d~21d~2 (12) 

where, as before, T_= L for rigid rods and 2"~_ 1 for semiflexible chains. 
This expression depends essentially on the value of concentration ema • 

corresponding to the maximally dense packing of the links. Obviously, 
Cma x ~ 1/d2L In this paper we will assume, to be definite, that 

4 1 
C m a x  = - -  (13) 

n d2] " 

The choice of any other numerical coefficient of order unity in Eq. (13) does 
not lead to the change of the qualitative conclusions of the present paper. 

4. FREE ENERGY IN THE PRESENCE OF THE FORCES 
OF ATTRACTION 

Now let us assume that the solution of stiff-chain macromolecules is no 
longer athermal, i.e., that in addition to the forces of steric repulsion there 
exist also forces of attraction of arbitrary nature between the links. It is clear 
that in this case we must add a new term, F 4, to the free energy, which 
would describe the influence of the forces of attraction. 

It is easy to show that in the case when the characteristic radius of the 
attraction forces, ra, exceeds considerably the characteristic width of the 
chain, d (ra > d), the influence of the attraction forces can be described by 
the mean field of the type 

U(n) = --UoC - u~c~P2(nno) (14) 

where u 0 and u~ are the constants characterizing the isotropic and the 
anisotropic part of the attraction forces, correspondingly, r /=  (P2(nn0))= 
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f f (n )Pz(nno)dO is an order parameter defined in a usual way, P2(nno) the 
second Legendre Oolynomial, n o the direction of the anisotropy axis. In the 
orders of magnitude uo, u a ~ WPd, where W is the characteristic energy of 
the intermolecular interaction. The free energy F 4 = � 8 9  is, 
thus, equal to 

F 4 = - -  �89 o + Uar] 2) (15) 

In spite of the fact that Eq. (14) is strictly valid only in the limit ra >> d, we 
will use it below also for the general case (r a ~ d). We believe that the 
corresponding errors of order unity change the results only quantitatively 
and do not influence the qualitative effects in the systems under con- 
sideration. 

Equation (15) can be conveniently rewritten as follows. Let Us note that 
very dilute polymer solution is deliberately isotropic, thus in this limit the 
free energy of the interaction is given by 

7r 
Fin t = F~ + F 4 = --4-NTe'~d -- �89 o (16) 

This value is equal to zero at the temperature 0 = (2/n)(Uo/Pd), which in the 
framework of our theory plays the role of the 0 temperature of polymer 
solution and determines the characteristic scale of energetic interactions in 
the system. Taking into account this notation the free energy F4 can be 
rewritten in the form 

F 4 = -NO -~  Fde(1 + xrl 2) (17) 

where x = ua/u o, As a rule, the anisotropic part of the attraction is much 
smaller than the isotropic one~ZT'zs); further we will use in specific 
calculations x = Ua/Uo = 0.1 as a reasonable estimation (calculations have 
shown that the properties of the liquid-crystalline transition depend very 
weakly on K, thus the specific assignement of the exact value of x is not 
essential). 

Equations (1), (2), (12), and (17) determine completely the free energy, 
F, of a polymer solution. To find equilibrium characteristics of the nematic 
ordering in this solution the expression for F should be minimized with 
respect to all possible orientational distribution functions, f (n) .  For this 
purpose we have used, following Refs. 15-18, an approximate variational 
method. For the cases shown in Figs. la, b, c the trial function was chosen in 
the form (el. Refs. 15-18) 

f ( n )  = const �9 exp ( - a  cos 2 ~o) (18) 
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where q~ is the angle between the vector n and the orientation axis, a the 
variational parameter and const a normalizing constant. For the case of 
Fig. ld it is convenient to represent in the form (18) not the function f ( n )  
itself, but the additional function ~,(n) [see Eq. (3)]. The minimization of the 
free energy and the determination of possible phases and the transition 
characteristics between these phases can be performed for the present 
problem in a standard way. Omitting all the intermediate calculations, in the 
next sections we will describe the main results obtained. 

5. NEMATIC  O R D E R I N G  IN THE SOLUTION OF 
RIGID RODS 

At first let us consider the results, which can be obtained using the 
theory described above for the well-studied case (see Refs. 5 and 20) of the 
solutions of long rigid rods of arbitrary concentration at the arbitrary tem- 
peratures. 

Some results for the athermal solution (0 = 0) are shown in Table I. It 
can be seen that the increase of concentrations corresponding to the nemafic 
ordering with the decrease of the ratio L / d  is somewhat slower than it would 
follow from the asymptotic Onsager theory, which is valid in the limit 
L/d>> 1. This conclusion agrees with the Flory theory. ~2~ However, the 
numerical values of c i and c a represented in Table I remain (even for finite 
values of L/d)  essentially lower than in the Flory theory. It is worthy also to 
note the fact of some relative narrowing of the transition region (decrease in 
w) with the decrease in L / d  and the fact of the practical independence of the 
order parameter at the transition point, r/0, of the value of L/d. 

Now we proceed to the general case of the solvent of arbitrary quality 
(0 4= 0). The calculated phase diagrams for the liquid-crystalline transition in 
the variables O / T -  6'/6'ma x for several value of L / d  are shown in Fig. 4. 

Table I. Nematic Ordering in Athermal Solutions of Rigid Rods 

L I d  c i / ema  x a C a / e m a •  W b t~ 0 c 

~cr 3.31 d/L 4.22 d/L 0.275 0.800 
100 0.0326 0.0415 0.273 0.802 
20 0.152 0.193 0.270 0.809 
5 0.483 0.580 0.201 0.817 

'~ c i and c~, polymer concentrations in the isotropic and anisotropic phases coexisting at the 
transition point. 

b W =-- (C a - -  Ci)/Cl,  relative width of the phase separation region. 
r/0, order parameter at the transition point. 
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At large L/d phase diagram has the characteristic form shown in 
Fig. 4a. In the high-temperature region there is a narrow corridor 
corresponding to the separation of the solution into the isotropic and the 
nematic phases. At low temperatures, on the contrary, we have a very broad 
separation region between the isotropic and concentrated highly ordered 
phase. These two regimes are separated by the interval between the triple 
point temperature, T t, and the critical temperature, T c, (To > T > Tt), within 
which there are two phase separation regions: between the isotropic and the 
anisotropic phases and between two anisotropic phases. The temperatures T t 
and T c exceed essentially the 0 temperature. The phase diagram of similar 
form was obtained in the early work of Flory ~2~ (see also Ref. 5). 

With the decrease in Lid the interval between T~ and T t becomes 
narrower (Fig. 4b) and disappears at (L/d)c 1 =- 15. At Lid < 15 there are no 
critical or triple points in the phase diagram (Fig. 4c) and it is possible to 
speak only about the crossover temperature, Tcr, between the narrow high- 
temperature phase separation corridor and the very broad low-temperature 
separation region. The temperature Tcr decreases with the decrease in L/d; at 
(L/d)~ 2 = 3.5, 2 when this temperature becomes noticeably lower than the 0 
temperature, the situation changes qualitatively once more: now we have the 
triple and critical points corresponding to the additional phase transition 
between two isotropic phases (Fig. 4d). The physical meaning of this result is 
rather obvious: at small values of Lid the properties of the solution of rods 
must approach the properties of the solution of isotropic particles, in 
particular, at low temperatures we must have a region corresponding to the 
ordinary isotropic phase-separation. 

The nematic ordering in the solution of rigid rods of finite length was 
considered in detail in Ref. 4 with the help of the lattice method. In that 
paper the phase diagrams of the type of Figs. la, b [at L/d > (L/d)~] and of 
Fig. lc [at Lid < (L/d)cl] were obtained; the value of (L/d)c 1 was shown to 
be equal to 20--this is rather close to our result (L/d)~ 1 -- 15 obtained using 
a completely different method. Main differences of the results of Ref. 4 from 
that shown in Fig. 4 concern low values of Lid. First of all, the regime 
shown in Fig. 4d was not found in Ref. 4. Apparently, this is connected with 
the fact that in Ref. 4 the isotropic part of the attraction forces, which is, as 
a matter of fact, predominant, was not taken into account. For the same 
reason the phase separation curves found in Ref. 4 in the high-temperature 
corridor at not very large values of Lid are strongly inclined. Second, 
according to Ref. 4 at Lid < 6.4 in the purely athermal case the liquid- 

z The possibility of using our theory at such small values of Lid is not clear. However, we 
present here this result since further the phase diagrams of analogous type will appear for 
the solutions of semiflexible macromolecules at significantly higher values of the asymmetry 
parameter, 
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crystalline ordering does not occur even at the highest concentrations. 
Apparently, this result is an artifact of the lattice model, since in the real 
system of so strongly asymmetric particles with an absolutely rigid steric 
interaction the orientational ordering at sufficiently high concentrations 
should appear at least from the packing considerations. A more detailed 
discussion of this point we postpone until the following publication devoted 
to the thermotropic case. Finally, we emphasize that for large values of L i d  
in the high-temperature region the method used here is asymptotically exact 
(see Refs. 5 and 29), while the Flory method overestimates significantly the 
transition concentrations in the asymptotic limit L >> d. 

6. N E M A T I C  O R D E R I N G  IN T H E  S O L U T I O N  OF S E M I F L E X l B L E  
F R E E L Y  J O I N T E D  M A C R O M O L E C U L E S  

Now we proceed to the consideration of the solutions of long chains of 
freely jointed segments of length l and diameter d (Fig. lb), i.e., of 
semiflexible macromolecules with the freely jointed flexibility mechanism. 

In Table II we present the results obtained for the liquid-crystalline tran- 
sition in athermal solutions of such macromolecules. The general tendencies 
of the variation of the transition properties with the decrease of the asym- 
metry parameter l id are here practically the same as for the solution of 
disconnected segments. In accordance with the conclusion obtained in Ref. 9 
the phase separation region for freely jointed chains is always somewhat 
broader than in the corresponding solution of disconnected segments. 

Phase diagrams for the case under consideration at several values of the 
parameter l id are shown in Fig. 5. In general these diagrams are similar to 
those shown in Fig. 4. However, an important qualitative difference lies in 
the fact that the left branch of the separation curves intersepts the ordinate 
axis at some finite temperature, Tg--at lower temperatures the isotropic 
phase is unstable even at very low polymer concentrations (this is connected 

Table II. Nematic Ordering in Athermal Solutions of Semiflexible Freely Jointed 
Macromolecules (Notation the Same as in Table I) 

lid ci/Cma~ cJC~a• w qo 

~ 3.25d/l 4.62d/I 0.422 0.858 
100 0.0319 0.0454 0.423 0.858 
20 0.150 0.208 0.387 0.856 
5 0.480 0.595 0.240 0.841 
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Fig. 5. Phase diagrams for the r~ematic ordering in the solution of semiflexible freely jointed 
macromolecnles with (a) l/d~ 50, (b) l/d-~ 20, (c) [[d= 5. Solid lines, limit L/I~ oa; dotted 
lines, large finite value of L/I. Phase separation region is shaded, 
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with the fact that, as soon as we are considering the limit of very long 
semiflexible chains L/ l  ~> 1, the macromolecule itself turns out to be a 
macroscopic object). If we assume the value of L/ l  to be large but finite, at 
T < Tg we will have a narrow region of stability of isotropic phase near the 
ordinate axis (dotted lines in Fig. 5); however, the width of this region even 
at T ~ Tg will be small (to the extent to which the parameter L/ l  is small) 
and will further decrease exponentially with the decrease in temperature. 

At lid > (l/d)c 1 -- 20 (Fig. 5a) the phase diagram for the nematic tran- 
sition has a usual form with the triple and critical points (cf. Fig. 4a). At 
(I/d)c~ > lid > (l/d)~ 2 = 6.8 the right branch of the phase separation curves is 
monotonous and does not exhibit any peculiarities (Fig. 5b). Finally, at 
lid < (l/d)~ 2 (Fig. 5c), when the temperature Tg becomes lower than the 0 
temperature, the critical point corresponding to the usual isotropic separation 
appears (cf. Fig. 4d). It is worthwhile to note that the values of (l/d)c 1 and 
(l/d)c 2 corresponding to the transitions between different regimes increase 
somewhat in comparison with the case of disconnected segments considered 
in the previous section. 

Using the results obtained we can determine the properties of the 
coil-globule transition in a single freely jointed macromolecule at L/I  ~> 1 
(see Refs. 30 and 31). Obviously, this transition occurs at T ~  Tg, since ar 
T < Tg the segment concentration inside the coil exceeds the maximal 
concentration corresponding to the thermodynamically stable dilute isotropic 
phase (cf. Ref. 5). Thus, from the above results it follows that at lid > 6.8 
the coil-globule transition in the freely jointed macromolecule takes place 
above the 0 temperature and somewhat lower than the triple point 
temperature, Tt, being a pronounced first-order phase transition with the 
formation of an orientationally ordered globule. If lid < 6.8 the succession of 
phase transitions in a single macromolecule when the temperature is lowered 
is the following: at first a usual transition coil-isotropic globule t31) takes 
place near the 0 temperature; the liquid-crystalline ordering inside the 
globules appears only at lower temperatures (T~-- Tt). 

It may be noted that some of the above-mentioned properties of the 
phase diagram of the solution of freely jointed chains in the limit lid ~ 1 
were obtained using other method in Ref. 5. 

7, NEMATIC ORDERING IN THE SOLUTION OF SEMIFLEXIBLE 
PERSISTENT MACROMOLECULES 

Now let us consider a solution of semiflexible persistent chains of 
diameter d with the length of the Kuhn segment equal to l (Fig. lc). Table III 
contains the results for the nematic phase transition in this solution in 
athermal case (0 = 0). It can be seen that, in agreement with the conclusions 
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Table III. Nematic Ordering in Athermal Solutions of Semiflexible Persistent 
Macromolecules (Notation the Same as in Table I) 

177 

//d C//Cma x Ca/Cmax W t~0 

~oo 10.38d/l ll.06d/l 0.0650 0.431 
100 0.986 0.1047 0.062 0.431 
20 0.405 0.424 0.047 0.428 
5 0.877 0.887 0.012 0.408 

drawn in Ref. 16 for the limit lid >> 1, in this case the ordering takes place at 
significantly higher concentrations, the relative width of the transition region 
and the order parameter at the transition point are much smaller than for the 
solutions of freely jointed macromolecules or rigid rods with the same 
parameters [ and d. With the decrease of the ratio lid these peculiarities of 
the persistent case become even more pronounced (see Table III). 

Phase diagrams for the solutions of semiflexible persistent chains at 
several values of lid are shown in Fig. 6. When the parameter lid is lowered 
these diagrams undergo the same sequence of transformations as in Figs. 4 
and 5. However, the critical values (l/d)c 1 and (lid)c2 separating different 
regimes for the case of persistent chains turn our to be significantly higher: 
( l id)el  = 125; (lid)c2=50. This means that the usual isotropic phase 
separation, as well as the phase transition coil-isotropic globule, can be 
realized even in the solutions of persistent chains with rather high degree of 
stiffness (lid <~ 50). Moreover, it can be seen from Fig. 6 that all the charac- 
teristic temperatues (Tg,  Tc, Tt) are for this case essentially lower than for 
the cases of Figs. la, b (at the same values Tand d). It is possible to draw a 
general conclusion that it is much more difficult to obtain an orientationally 
ordered phase (i.e., we need much higher concentrations) for the solution of 
persistent chains than for the solution of freely jointed chains. The reasons 
for this difference were analysed in Ref. 16 for the athermal solution in the 
limit lid >> 1; the considerations of Ref. 16 remain valid in the present case 
as well. 

8. NEMATIC  ORDERING IN THE SOLUTION OF 
SEMIFLEXlBLE M A C R O M O L E C U L E S  WITH 
ROTATIONAL- ISOMERIC  FLEXIBILITY M E C H A N I S M  

Finally, let us discuss the properties of the orientational ordering in a 
solution of rotational-isomeric semiflexible chains for the model shown in 
Fig. ld. It should be recalled that this problem was considered for the 
athermal case in the limit l >> d in Ref. 18, where it was shown that in this 
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Fig. 6, Phase diagrams for the nematic ordering in the solution of semiflexible persistent 
macromolecules with (a) l /d= 500, (b) 1/d = 50, (c) lid = 5. Solid lines, limit L / l ~  oo; 
dotted lines, large finite values of L/l. Phase separation region is shaded. 
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case the liquid-crystalline ordering is the transition between the isotropic 
phase and the completely concentrated and completely ordered (in the limit 
L / l ~  0o) phase. In this latter phase macromolecules are practically 
completely elongated, thus effectively they can be considered as rigid rods of 
very large length L >> l. These anomalous transition features are especially 
pronounced for the chains with "pure" rotational-isomeric flexibility 
mechanism (Fig. ld); if some small flexibility component of persistent 
character is present (which is always the case for real chains) these features 
are manifested in a not so extreme form (remaining, nevertheless, very 
essential). ~18) However, we will not take into account the persistent flexibility 
component here, keeping in mind that in the presence of the latter the 
qualitative properties of the orientational ordering in the solution of 
semiflexible rotational-isomeric chains will be defined by the combination of 
the tedencies described in this and in the previous sections (cf. Ref. 18). 

Table IV contains some of the characteristics of the liquid-crystalline 
ordering for the athermal solution of rotational-isomeric macromolecules 
obtained using the method of this paper. Complete phase diagrams for 
several values of the parameters l, a, and d are shown in Fig. 7. It can be 
seen that the anomalous transition properties mentioned above are well 
apparent in the presence of attraction forces (and for finite values of l/d) as 
well. In the system under consideration the value of (l/d)c I is meaningless 
since the only possible anisotropic phase is the completely ordered one. At 
lid > (l/d)c z the phase diagram has the form shown in Figs. 7a, b, if l id < 
(l/d),~ a critical point corresponding to the isotropic phase separation 
appears (Fig. c). In the latter case in a single macromolecule the coil- 
isotropic globule phase transition takes place near the 0 temperature, and 
only upon further temperature lowering we reach the point (T ~ Tt), at which 
the intramolecular liquid-crystalline ordering takes place. The value of ( l /d )e  2 

Table IV. Nematic Ordering in Athermal Solutions of Semiflexible Rotational-Isomeric 
Macromolecules (Notation the Same as in Table I) 

l/d aid ei/Cm, x e,:,/em.,: 

~o~ Arbitrary 2d/l 1 
100 5 0.0210 1 
I00 1 0.0201 1 
20 5 0.154 1 
20 1 0.103 1 
5 1 0.468 1 
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Fig. 7. Phase diagrams for the nematic ordering in the solution of semiflexible rotational 
isomeric macromolecules with (a) aid = 1 and lid = 50, (b) lid = 5, (c) lid = 3.5. Solid lines, 
limit L/l-~ oo ; dotted lines, large finite values of L/l. Phase separat ion region is shaded. 
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is not universal (as for the models of Figs. la, b, c), but depends on the 
relation between the length of a monomeric link, a, and its diameter, d: 

a[ 4 j 
(l/d)c2 : d 1 -- exp( -1 .1a/d)  - 1 (19) 

Moreover, it can be noted (see Table IV) that in general for the model of 
Fig. ld with finite value of l id the transition properties depend not only on 
the value of l/d, but on the ratio aid  as well. 

As the probability of the gauche conformation, p, further increases and 
approaches unity, the completely ordered state becomes less and less 
favorable and the usual liquid-crystalline phase with finite anisotropy degree 
can appear. It turns out that the corresponding phase transitions take place 
at the concentrations so close to Cma X that with good reason they can be 
considered as thermotropic. Thus these transitions will be analyzed in the 
future publication. 

9. CONCLUSION 

With the help of a universal method we have considered specific 
features of the liquid-crystalline ordering in the solutions of semiflexible 
macromolecules with different flexibility mechanisms (and in the solutions of 
rigid rods) at arbitrary solution concentrations and arbitrary temperatures 
(solvent quality). The properties of the corresponding phase transitions were 
shown to be strongly dependent on the degree and type of the flexibility of 
solute macromolecules. 

It is worthwhile to emphasize that the tendency to form an orien- 
tationally ordered phase in the systems under consideration is connected 
mainly with the shape anisotropy of macromolecules, which becomes more 
and more important with the increase of the solution concentration and of 
the forces of isotropie attraction. The anisotropy of attraction forces does not 
play an essential role: even the complete neglect of this anisotropy (u a = 0) 
lead only to the insignificant changes in the form of the phase diagrams. 
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